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Received 11 May 1979, in final form 16 July 1979 

Abstract. The previously developed ’continuous temporal development and Noether‘s 
theorem’ approach to the association of symmetries and conservations of the laws of nature, 
part of the foundation of any (classical or quantum) Lagrangian theory, is generalised 
significantly. Within this framework a strong result is obtained for the inverse Noether’s 
theorem, associating symmetries with given conservations. A general symmetry-conser- 
vation formalism is proposed, into which both the previously developed ‘linear temporal 
development and conserved eigenheit’ approach, part of the foundation of any quantum 
theory and also applicable to certain classical ones, and the ‘continuous temporal, . .‘ 
approach, as different as they are, fit nicely. 

1. Introduction 

Nature exhibits symmetries and conservations; we associate symmetry and conser- 
vation in our theories. In a previous article (Rosen and Freundlich 1978), referred to 
hereafter as SAC, an investigation motivated by two premises based on this fact was 
presented. The first premise is that the most important handle to the laws of nature that 
we have, as long as the laws of nature themselves are not fully known (if, indeed, they 
ever will be or can be), is their symmetries and conservations. The second premise is 
that, although it is we who are associating symmetries and conservations, and not 
nature, the symmetry-conservation correspondences that emerge from our physical 
theories and formalisms are no coincidence, but are one of the most fundamental, if not 
the most fundamental, aspects of the laws of nature, barring complete knowledge of the 
laws themselves. 

These two premises motivate us to find and investigate theoretical structures that 
link symmetries and conservations, including paring down known theoretical structures 
to their barest essentials, in order to reveal the vital kernel relating symmetries and 
conservations of the laws of nature. This kernel could then serve as a nucleus around 
which present theories might be restructured or new theories constructed. And, more 
fundamentally, this kernel could help us learn something about the nature of nature. 

Thus we pose the question: what are minimal sets of assumptions giving relations 
between symmetries and conservations? In partial answer we presented, examined and 
exemplified in SAC two sets of assumptions relating symmetry and conservation that we 
have not succeeded in reducing, so they might be minimal. One set we called ‘linear 
temporal development and conserved eigenheit’, referred to hereafter as LTDCE. It is a 
subset of the full set of assumptions underlying any quantum theory and is also 
applicable to certain classical theories. The other set of assumptions is the ‘continuous 
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temporal development and Noether’s theorem’ approach, referred to hereafter as 
CTDNT. It forms part of the set of assumptions of any (classical or quantum) Lagrangian 
theory. The results found in SAC for LTDCE and CTDNT are summarised and discussed 
there in 8 8. 

In the present article we advance the investigation of symmetry and conservation 
that was started in SAC. In 8 2 we generalise CTDNT significantly by allowing more 
general transformation groups. In 5 3 we investigate the inverse Noether’s theorem, 
and a strong result is obtained. In 5 4 we work through a detailed example to clarify 9 9  2 
and 3. Section 5 summarises our CTDNT results. In 9 6 we propose a general symmetry- 
conservation formalism, into which both LTDCE and CTDNT, as different as they are, fit 
nicely. 

In order to save space we sacrifice self-containment of the present article and rely 
heavily on the notation and results of SAC. As in SAC, we assume whatever technical, 
mathematical assumptions are necessary to make our discussion meaningful. 

2. More on continuous temporal development and Noether’s theorem (CTDNT) 

We generalise the one-parameter transformation groups (ME, f M e ( t ) )  considered in 9 4 
of SAC to (ME,(, f.(u, t ) ) .  The E-parametrised group of mappings of state space onto 
itself, Me, is generalised to depend additionally on the time t of the object state, ME,,, so 
that state U at time t is mapped to state ME,&. The time of the image state M,,(u is now 
given by f G ( u ,  t ) ,  where the corresponding function in SAC, fMc (t) ,  is generalised to 
include additionally dependence on the object state itself. The functionf,(N(f, t l ) u l ,  t l )  
must be strictly monotonically ascending in t for all u l ,  t l ,  E, where N(t ,  t l )  is the 
temporal development mapping defined in 8 4 of SAC, and suitable generalisations of 
equations (28)-(33) of SAC must hold. 

The development of CTDNT presented in 8 8  4 and 6 of SAC, including figures 2, 4 
and 5 there, generalises in a very straightforward manner, when transformation groups 
( M E , ,  f e (u ,  1) )  are used instead of (ME, f M e ( t ) ) .  So we shall refrain from going through the 
development again. However, due to its importance we give the generalised version of 
the commutativity relation expressing the fact that (Me,(, f e (u ,  t ) )  is a symmetry of the 
laws of nature in the sense of SAC: 

Me,(N(t, f1)ul = N ( ~ E ( ~ ( ~ ,  f l )u l ,  t ) ,  f ~ ( U 1 ,  t l ) ) M e , t , u l  (1) 

for all u l ,  tl, f, E. 

In the type of investigation with which we are involved it is always very beneficial to 
generalise; the more, the merrier. The above generalisation of LTDNT, however, is not 
only worthwhile for its own sake, but is also useful, having implications for the inverse 
Noether’s theorem and giving the following result, which also has further implications. 

Let (Me,,,fe(u, t ) )  be a group of transformations such that the generalisation of 
equation (41) of SAC holds, 

where E is infinitesimal, 
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(generalisation of equation (39) of SAC), L(u, t )  being the Lagrangian, 

(generalisation of equation (40) of SAC), and the term S(M,f,L in equation (3) is defined 
to be 8N,,,f,L, where the mapping N(M, f ) ,E ( t ,  t l)  is the variation of N(t ,  t l )  associated with 
( M e , r )  fc(u, t ) )  through 

def 
N(M,f),c(fe(N(t, t l )u l ,  t ) ,  t l )u l  = Mc,rN( t ,  t ~ ) u l  ( 5 )  

(generalisation of equation (35) of SAC), and SN,M,f,L is the variation of L produced by 
N ( M , f ) , c ( l ,  tl),  

(generalisation of equation (22) of SAC). Thus (ME,r,fE(u, t ) )  is associated with the 
conservation 

where 

Q ( M , f ) ( u ,  t )  = S ( M , f ) ( u ,  t )  -f’(u, t)LI U, t )  - n(M,f)(u, t )  (8) 
(generalisation of equation (44) of SAC) up to an arbitrary additive constant, and I I ( M , f )  
is defined to be ITNo,f, in equation (6) .  (The duplication of symbols, with S(M, f ,  = S N ( M , f )  
and II(M,f) = ITNcM,f), is a result of the way CTDNT was developed in 9 4 of SAC.) 

It might happen that for certain symmetry groups for which equation (2) holds the 
equation takes the form 

def 

def 

[ S ( M s f , L 1 =  09 (9) 

so that S ( M , f ) ( u ,  t )  for these symmetry groups is constant and can be taken as equal to 0. 
(In Rosen (1972) such transformations in the context of classical field theory were called 
‘invariance transformations’.) In B 7 of SAC we saw an advantage for such symmetry 
transformations (equation (107) and the following there), and another advantage 
appears later in the present article. We know that while ITcM,f)(u, t ) ,  Q(M,f)(u,  t )  and 

(10) 

are the same functions of U, t for all members of the Noether family (i.e. all equivalent 
transformation groups in the sense of 8 6 of SAC) of symmetry group (Me,t,fc(u, t ) )  
obeying equation (2), S(M,f)(u,  t )  is not. If (Mc,r , fe(u,  t ) )  obeys equation (2 )  but not 
equation (9), can another member of its Noether family, all of which are also symmetry 
groups and obey equation (2), be found for which equation (9) holds? The answer is 
that within the framework of CTDNT, as developed in SAC and generalised above, the 
possibility exists but is not assured, as we now show. 

R ( M , f ) ( U ,  t ) ,  where 

R ( M , f ) b ,  t )  = S ( M , f ) ( U ,  t )  -f’(u, t )L (u ,  t ) ,  

Let E ( u ,  t ) )  be a member of the Noether family of (Me,r,fE(u, t ) ) .  Then 

ae,ru = ~ ( f ; ( u ,  t ) ,  f e ( u ,  t))M,rU (11) 
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(generalisation of equation (58) of SAC). Clearly for 
(9), given that (ME,!, fe(u, t ) )  obeys equation (2), it is necessary and sufficient that 

E ( u ,  t ) )  to obey equation 

?(U, t )  = f ’ (u ,  t ) - ~ ( M , f ) ( U ,  t)/UU, t ) .  (12) 

Assuming that L(u,  t )  does not vanish, we proceed to solve for fE(u, t ) ,  given 
f E ( u ,  t ) ,  S(M,f)(u, t )  and L(u, t ) ,  and find solutions, such as f E  -cS(M,f)/L, fc * 
[1 - e x p ( * 4 ~ , f ) / L ) I ,  f e  *[I - exp(*cS(~,fJl/_k, f E  = exp(-ES(M,f)/tL). However, we 
have no way of guaranteeing in general that f E ( N ( t ,  tl)ul, t )  be strictly monotonically 
ascending in t. Thus we have the unassured possibility that (A&,,, E ( u ,  t ) )  obeying 
equation (9) can be found. 

As an example, we take classical Lagrangian mechanics, following 8 7 of SAC (with 
appropriate changes in notation). Let (ME,(, f e ( u , ,  li,, t ) )  transform the trajectory u , ( t )  to 
trajectory u , ( ~ ) + E u ( M , ~ ) , ,  where state (ul(t), Li,(t)) on the object trajectory at time t is 
mapped to state (u , ( t )  +cw(,M,fIl(uk(t), t ) ,  zi,(t) + E W ( ~ J ) ~ ( U ~ ( ~ ) ,  t ) )  on the image tra- 
jectory at time 

(13)  f€(Ul(t), u / ( t ) ,  t )  = l + 4 ( U l ( ~ ) ,  G / ( t ) ,  f), 

U(M,f) l  = w(M,f)l(U,(t), t )  --f’(u,(t), & ( t ) ,  t ) k ( f ) .  

and 

(14) 

Let (Me,(, fe(u,, u,, t ) )  obey equation (2) (in the form of equation (97) of SAC). Then for 
(A&, fe(ul, ci,, t ) )  to be a Member of the same Noether family and to obey equation (9) it 
is necessary that 

.?(ut, U,, t )  =f’(u,, u,, t )  - S(w,f)(U,, ul, t)/L(U,, u,, t ) .  (15) 

3. Inverse Noether’s theorem 

First of all we note the following. We have seen that a transformation group 
(Me,l, f e  (U, t ) )  defines a unique variation of N(t ,  t l ) ,  N(M.f),E(r7 t l) ,  by equation ( 5 ) ,  and we 
have seen in $ 6  of SAC that equivalent transformation groups define the same variation 
of N(t, t l ) .  Thus it is the whole family of equivalent transformation groups, called a 
Noether family if it is associated with a conservation, that is associated with the 
variation of N(t ,  tl). Conversely, the generalisation of CTDNT presented in the preced- 
ing section allows any variation of N(r, t l) ,  Ne(& t l ) ,  to define a unique family of 
equivalent transformation groups, whose time-non-varying Member (A&, t )  is given by 

(16) Me,( = Ne ( 6  t ) ,  

Me,rld = N ( f e ( ~ ,  t)7 f)Nc(t7 t ) u  

and whose general member (ME,l, f e (u ,  t ) )  with arbitrary fE(u, t )  is given by 

(17) 

according to equation (11). 
Now we are prepared to attack the inverse Noether’s theorem, obtaining a sym- 

metry from a given conservation. Within the framework of CTDNT the following can be 
stated. If we have a function Q(u, t )  that is conserved, 

0 
(18) 

d 
-Q(N(t ,  ti)ui, t )  = 0 dt 
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for all u l ,  t l ,  and if a variation of N(t,  tl), N,(t, t l ) ,  can be found for which 

then the members of the Noether family of transformation groups defined by N,(t, tl) 
are all symmetry groups. 

To see that, note that from equation (22) of SAC and equation (19) above follows 
the validity of equation (24) of SAC and of the generalisation of equation (63) of SAC 
for the time-non-varying member of the Noether family defined by N,(t, tl). Then 
reverse the line of reasoning from equation (59) to equation (63) in 4 6 of SAC 
(analogous to the line of reasoning from equation (34) to equation (41) in 0 4 of SAC, 
the latter presented in more detail) to obtain the result that the transformation group 

W€J, f )  = (NE(f, t ) ,  t) (20) 

is a symmetry and thus are all members of its Noether family. (Since we now know that 
every Noether family is a symmetry family, the relevant statement in the sixth 
paragraph of 4 6 of SAC should be tightened up accordingly, to make it reflect the 
situation of the generalised CTDNT framework.) 

That is what can be definitely stated about the inverse Noether's theorem. We now 
consider possibilities. When will equation (19) hold for the conserved function Q ( u ,  t)? 
Given equation (18), if equation (19) does not hold, then there must exist a variation of 
N(t,  tl), NE(t ,  tl), and a real function of a real variable, F (  ) such that F ( 0 )  = 0 ,  for which 

If F (  ) is invertible, we have 

If F (  ) is such that 

for some Q ( u ,  t ) ,  we obtain equation (19) with 6 ( u ,  t )  substituted for Q ( u ,  t), and the 
inverse Noether's theorem applies. 

As an example of the inverse Noether's theorem, we again take classical Lagrangian 
mechanics, following 0 7 of SAC (with the notation modified appropriately). Let 
Q(u, ,  U,, t) be conserved (equation (18) holds in the form of equation (83) of SAC), such 
that 

(24) 
d 
dt -Q(uj(t), G k ( t ) ,  f )  = a,(u,( t ) ,  a,([), f)E'L. 

Then putting 

0N.r = 4, (25) 
we define a variation NE(t ,  tl) for which equation (82) of SAC holds. It then follows that 
equation (2) (in the form of equation (97) of SAC) holds for the time-non-varying 
transformation group (Ne(t, t ) ,  t )  and that the latter is a symmetry and thus so are all 
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members of its Noether family. To obtain a member for which equation (90) of SAC 
holds, find an appropriate fe(ui ,  uj, t )  obeying 

(26) 

by equation (14) (equation (89) of SAC). To obtain a member for which equation (9) 
holds, find an appropriate fE (u i ,  uj, t )  obeying 

(27) 

aai/auj + ui af’/aui +f’ si = o 

f’ = -(Q + ajv i ) /L  

by equation (98) of SAC and equation (15) above. 

4. Example 

To help clarify the previous two sections we shall now work through a rather specific 
example step by step. The example chosen is hopefully both sufficiently simple, so that 
it indeed clarifies things as intended, and complicated enough to do this non-trivially. 
Consider a set of interacting point particles in one dimension, where indices i, j ,  etc, 
label the particles, and the summation convention is not in effect. Conditions are 
non-relativistic. The interaction potential is assumed to depend only on the distances 
between the particles and the differences of their velocities. Thus the Lagrangian is 

(28) 

where m, is the (constant) mass of the ith particle, x ,  is its spatial coordinate, and 1, its 
velocity. A state of the system at any time t is completely described by the coordinates 
and velocities of all the particles at that time (see § 7 of SAC). The equations of motion 
are (from equations (78)-(81) of SAC) 

mlxl = F,, (29) 

L = 4 c m1i:  - V(X, - x,, x/( - i,), 
I 

0 

for all i, where x, is the acceleration of the ith particle, upon which the force Fl acts, 
where 

We cannot, of course, give an explicit representation of the temporal development 
mapping N(t ,  t l )  for finite time intervals for this general potential. However, we can do 
so for infinitesimal time intervals. Thus the state ( x , ( t ) ,  i , ( t ) )  at time t develops into the 
state (x, ( t  + dt), x,(t + dt)) after tiwe interval dt:  

( x , ( t ) ,  x,( t ) )  - ( x , ( t + d t ) ,  x,( t+dt))  = ( x , ( t ) + i , ( t )  dt, x , ( t ) + i , ( t )  dt) 
N(t+dt , r )  

= ( x l ( t ) + i r ( t )  dt, x, ( t )+(F, /m,)  dt). (31) 
In addition, consider the one-parameter transformation group (ME,r, f 6 )  of non- 

relativistic boosts: 

(32) ( X l ( t ) ,  i , ( t ) )  - ( X I ( t ) + E t ,  i , ( t ) + E )  

f €  = t (33) 

M. I 

defined for all boost velocities E .  
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Due to the assumed structure of V, equation (1) is found to hold, where its left-hand 
side for this example is M,,r,d,N(t+dt, r ) ( x i ( t ) ,  i j ( t ) ) ,  its right-hand side is N ( t  + 
df, t)M,, ,(xi(t) ,  i j ( t ) ) ,  and the two are calculated using equations (30)-(32). Thus the 
group of boosts is a symmetry for the example. 

Let us check if equation (2) holds. First we see what the mapping N ( , W , , + ~ ~ ) , ~  ( t  + 
df, t ) ,  the variation of N(r+dt ,  t )  associated with the boost group, looks like. By 
equation (5), and using equations (31) and (32), it is 

( x i ( t ) ,  i j ( t ) )  (34) 
" 4 , , + d r ) . r  ( t+d f , r )  (x i ( t )+Et+( i i ( r )+E)  dt, i j ( t ) + e  + ( F j / m j )  dt). 

Now equation (4) gives us 

f ' = O .  

For SL we obtain, using equation (73) of SAC (with E infinitesimal), 

d 
mixi = E -  1 mixi. SL = E 

i dt i 

Thus equation (2) indeed holds, where 

s = C mixi. 
i 

(35) 

(37) 

So the boost group is associated with a conservation, equation (7), where the 
conserved quantity is 

Q = M ( X  - i r )  (38) 

M = C  mi, (39) 

(up to a constant), where M is the total mass, 

i 

X is the coordinate of the centre of mass, 

x = mixi/M, 
i 

and X is the velocity of the centre of mass. To get this we used equation (8) above and 
equation (76) of SAC, giving 

II = t 1 mixi. (41) 
i 

Conservation of Q is equivalent to conservation of centre-of -mass velocity. 
So far we have exhibited the operation of Noether's theorem for this example. 

Concerning the rest of Q 2, we notice that equation (9) does not hold, and we look for 
another member of the Noether family of the boost group for which equation (9) does 
hold. For this member, E ) ,  equation (12) (or (15)) must hold in the form 

f' = MX/L,  (42) 

due to equations ( 3 3 ,  (37), (39), (40), and A?6,t is obtained from equation (11). 
However, since we can represent N(t ,  rl) explicitly only for infinitesimal time intervals, 
we can use equation (1 1) only by taking E infinitesimal, to ensure that E and f,, which 
then differ infinitesimally from t individually, will differ infinitesimally from each other. 
Then 

f ,  = t + €MX/L.  (43) 
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by equations (31) and (32). 
We now turn to Q 3 and the inverse Noether’s theorem. This time we start with the 

Lagrangian of equation (28), equations of motion (29) and (30), the temporal 
development mapping of equation (31), and with the conservation of 8, where Q is 
given by equation (38). Indeed, we know that a variation of N(t ,  t l ) ,  N,(t, tl), can be 
found for which equation (19) (or (24)) holds. It is given by equation (34), and for i t  

L’= t 1 E‘L 
i 

by equations (29), (30), (38)-(40) above and equation (77) of SAC. Thus, we obtain via 
equation (25) that the boost group of equations (32) and (33) is a symmetry, as are all 
members of its Noether family, of which it is, in fact, the time-non-varying member. By 
equation (26) it is also a member for which equation (90) of SAC holds. 

5. Summary of CTDNT 

Our results concerning the inverse Noether’s theorem together with the CTDNT results 
found in SAC can now be summarised. (The summaries presented in SAC in the 
next-to-last paragraph of Q 4 and in the second paragraph of 9 8 do not include the 
inverse Noether’s theorem results that were just derived for the generalisation of 
CTDNT.) We can state the following. 

CTDNT (in its generalised version) allows the association of certain one-parameter 
continuous groups of symmetry transformations and conservations. Not every sym- 
metry group needs to be associated with a conservation (since equation (42) of SAC 
might hold rather than equation (41) of SAC or its generalisation, equation (2) above). 
Not every conservation needs to be associated with a transformation group but, if it is, it 
is associated with a Noether family of symmetry groups. 

6. General symmetry-conservation formalism 

The evidence before us consists of LTDCE amd CTDNT, where both approaches were 
distilled from well-known and useful formalisms for expressing the laws of nature. Both 
LTDCE and CTDNT associate symmetries and conservations, each in its own way. Indeed, 
these two ways of associating symmetries and conservations are so different from each 
other that they seem to have nothing significant in common. Yet they certainly can 
coexist peacefully, since both LTDCE and CTDNT are parts of the foundation of quantum 
theory. 
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However, we want more than that. We would, in fact, like to have a general 
symmetry-conservation principle, of which both LTDCE and CTDNT, as different as they 
might be, are realisations. Such a principle, if it existed, would necessarily be very 
abstract, since it would be an abstraction of both LTDCE and CTDNT, which are already 
quite abstract themselves. We have not (yet) found a general symmetry principle. For 
the present we make do with the following proposal of a general symmetry-conser- 
vation formalism. 

Recall that a symmetry group of state space (not necessarily a symmetry of the laws 
of nature) defines a decomposition of state space into equivalence subspaces, each 
equivalence subspace consisting of all states that are related with each other by any 
element of the symmetry group, i.e. each equivalence subspace is an orbit of the 
symmetry group in state space. On the other hand, an equivalence relation in state 
space defines a symmetry group (again not necessarily a symmetry of the laws of 
nature), which is the maximal subgroup of the transformation group of state space that 
preserves equivalence subspaces. (If non-invertible transformations are of interest, we 
may speak of the transformation semigroup of state space, and an equivalence relation 
will define a symmetry semigroup.) 

In this sense a conservation can be considered to be a symmetry (not of the laws of 
nature!). A conserved quantity decomposes state space into equivalence subspaces, 
where each equivalence subspace consists of all states having the same value of the 
conserved quantity. The temporal development mapping, N, preserves these 
equivalence subspaces and can therefore be considered a symmetry transformation (or 
family of symmetry transformations) and, if N is invertible, an element (or subset or 
subgroup) of the symmetry group defined by this equivalence relation. (If N is 
non-invertible, it will be an element (or subset or subsemigroup) of the respective 
symmetry semigroup. In our discussion of LTDCE in § 2 of SAC we found that for N 
non-invertible there arises the possibility of partial conservation.) Any conservation, 
whether of a ‘quantity’ or not, can be described in this way. So in our relentless quest for 
generalisation and abstraction we now introduce the general, abstract definition of 
conservation (setting aside partial conservation for the time being). Conservation is 
defined by N preserving a decomposition of state space into equivalence subspaces. We 
can then speak of conservation of the equivalence relation or of the decomposition. 

Let us now consider the general formalism defined by the following three axioms. 
(i) There exists a mapping from the set of discrete invertible transformations and 

one-parameter transformation groups of state space to the set of decompositions of 
state space into equivalence subspaces (or the set of equivalence relations in state 
space). (Not every element of the former set needs to be an object of the mapping, and 
not every decomposition (or equivalence relation) needs to be an image.) In other 
words, each discrete invertible transformation or one-parameter transformation group 
of state space might or might not define a decomposition of state space into equivalence 
subspaces and, if it does, it will do so uniquely. Denote an element of the former set by 
M, an element of the latter set by Q, and the mapping by M + Q. 

(ii) If M is a symmetry of the laws of nature (MN = N M )  and M +  Q, there is 
conservation of Q ( N  preserves Q). In other words, if a discrete invertible trans- 
formation or a one-parameter transformation group of state space is a symmetry of the 
laws of nature, then the decomposition of state space into equivalence subspaces 
defined by it, if it defines such a decomposition, is preserved by N. 

(iii) If there is conservation of Q ( N  preserves Q) and there exists one or more M 
such that M + 0, then all such M are symmetries of the laws of nature (MN = N M ) .  In 
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other words, if a decomposition of state space into equivalence subspaces is preserved 
by N, then all discrete invertible transformations and one-parameter transformation 
groups of state space that define this decomposition, if there are any, are symmetries of 
the laws of nature. 

Both LTDCE and CTDNT are compatible with this formalism. For LTDCE (8  2 of 
SAC) assumption ( a )  (‘multiplication by a real number’) allows fulfilment of axiom (i). 
If M is a discrete invertible transformation, it will define a decomposition of state space 
into equivalence subspaces by having all the eigenstates of M belonging to a common 
eigenvalue form an equivalence subspace for each eigenvalue, and having all the states 
that are not eigenstates of M form another equivalence subspace. If M is a one- 
parameter transformation group, it will define a decomposition similarly, but with 
eigenstates and eigenvalues of its generator, dM,/del,=o. The mapping M +  Q will be 
many-to-one, if different M and dM,/del,=o, although they do not have to have the 
same eigenvalues, have the same sets of eigenstates belonging to common eigenvalues. 

Assumptions ( b )  ( N  linear) and (c) ( N  invertible) (together with (a ) )  then allow 
fulfilment of axiom (ii), while assumptions ( b )  and ( d )  (eigenstates of M form a 
complete set) (together with ( a ) )  allow fulfilment of axiom (iii). (If symmetry follows 
from partial conservation, it will follow from conservation a fortiori.), as detailed in 
SAC. Thus LTDCE with all of assumptions (a ) ,  (b ) ,  (c) and ( d )  fits nicely into the general 
formalism. 

For CTDNT discrete transformations are not relevant at all, so they do not serve as 
objects of the mapping M +  Q of axiom (i). Among the one-parameter transformation 
groups ff ( U ,  t ) )  only those for which equation (2) holds define decompositions of 
state space into equivalence subspaces, which is done by means of the function 
Q ( M , f ) ( ~ ,  t )  of equation (8). The decomposition is obtained by having each equivalence 
subspace at time t consist of all states U for which Q(M,f)(u,  t )  has the same value. That 
fulfils axiom (i). 

As for axiom (ii), for a symmetry group for which equation (2) holds (i.e. equation 
(42) of SAC does not hold) Q ( M , f ) ( ~ ,  t )  is indeed conserved (Noether’s theorem). And 
axiom (iii) is also fulfilled, since if Q(M,fl(u,  t ) ,  related to (M, , t , f , (~,  t ) )  by equations (2) 
and (8), is conserved, the transformation group is a symmetry (inverse Noether’s 
theorem). 

However, although CTDNT, as we just saw, fits nicely into the general formalism, it 
does so very tightly, since in axiom (i) the mapping M + Q is defined only for symmetry 
groups associated with conservations and not for a wider class of objects, as in the case 
of LTDCE. Thus axioms (ii) and (iii) are fulfilled automatically by fulfilling axiom (i). 
Attempts to make CTDNT fit more loosely into the general formalism seem to run into 
difficulties. 

For example, if instead of the Q ( M , f ) ( ~ ,  t )  of equation (8) we use 

to allow a transformation group (Mf,(, f6 (u ,  t ) )  to define a decomposition of state space 
into equivalence subspaces, as above, all transformation groups will be objects of the 
mapping M + Q of axiom (i). However, axioms (ii) and (iii) will then be fulfilled only for 
symmetry groups obeying equation (9) ,  and symmetry groups obeying equation (2) but 
not equation (9) will not be covered. That could be acceptable, if we knew that every 
Noether family contains a member obeying equation (9). But, as we saw in 9 2, 
although the possibility exists, it does not seem to be guaranteed. 
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Or instead of the Q(M,f)(u,  t )  of equation (8) or (47) we could use 

where to is arbitrary but fixed, for the same purpose. For invertible N ( t ,  t l )  (affording 
unique integration paths in state space) this gives us a mapping M +  Q for all 
transformation groups and thus fulfils axiom (i). This function is non-local in general, 
becoming local only when equation (2) is satisfied. By equations (3) and (6) it is 
conserved (i.e. equation (7) holds) for all transformation groups, so that axiom (ii) is 
fulfilled automatically and axiom (iii) not at all. However, if we define what we mean by 
‘conservation’, for the purpose of fulfilling the general formalism, as conservation of a 
local function of state and time, then axioms (ii) and (iii) are fulfilled non-trivially. The 
difficulty here, if indeed it is a difficulty, is that a non-local function is being used and 
that this function is defined in general only for invertible N ( t ,  t l ) .  

7. Conclusions 

Our generalisation of CTDNT to more general transformation groups led to the 
unguaranteed possibility that every Noether family contains a transformation group 
obeying equation (9),  such transformation groups possessing certain advantages. 

For the inverse Noether’s theorem in generalised CTDNT we found the strong result 
that every Noether family is a family of symmetry groups of the laws of nature. 

We proposed a general symmetry-conservation formalism, into which both LTDCE 
and CTDNT, as different as they are, fit nicely. 
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